General Chemistry 2 Exam 1 Summer 2008

Kingsborough Community College Dept. of Physical Sciences

Each question is worth 3 points. Mark your answers on the exam and on the scantron form.

First-order decay kinetics $ln(A/A_0) = -kt$ $ln(A) = -kt + ln(A_0)$ $kt_{1/2} = 0.693$

$$\begin{split} [H_3O^+][OH^-] &= K_W = K_a K_b = 10^{-14} \\ pH + pOH &= 14.00 \\ pH &= -log \ [H_3O^+] \\ pOH &= -log [OH^-] \end{split}$$

 $E = \Delta mc^2$ $c = 3.0 \times 10^8 \text{ m/s}$

 $\begin{aligned} p &= 10^{-12} \\ n &= 10^{-9} \\ u &= 10^{-6} \\ m &= 10^{-3} \\ c &= 10^{-2} \\ k &= 10^{3} \\ M &= 10^{6} \end{aligned}$

 $G = 10^9$

- 1. Alpha particles are identical to
 - A. protons.
 - B. helium atoms.
 - C. hydrogen atoms.
 - D. helium nuclei.
 - E. electrons.
- 2. How many neutrons and protons (nucleons) does an atom with the symbol $^{33}_{16}\mathrm{S}$ have?
 - A. 33
 - B. 16
 - C. 49
 - D. 16
 - E. None of these.
- 3. When atoms of beryllium-9 are bombarded with alpha particles, neutrons are produced. What new isotope is also formed?

$${}_{2}^{4}\text{He} + {}_{4}^{9}\text{Be} \rightarrow {}_{0}^{1}\text{n} + \underline{\hspace{1cm}}$$

- A. ¹²₆C
- B. ⁵₃Li
- C. ⁸₃Li
- D. ${}^{10}_{5}$ B
- E. ${}^{12}_{5}$ B

4. What is the missing symbol in this plutonium fission reaction?

$$^{239}_{94}Pu + ^{1}_{0}n \rightarrow \underline{\hspace{1cm}} + ^{91}_{38}Sr + 3^{1}_{0}n$$

- $^{148}_{56}$ Ba A.
- B.
- $^{0}_{-1}\beta$ $^{143}_{54}$ Xe C.
- D.
- E.
- 5. A typical radius of an atomic nucleus is about
 - A. $100 \, \mu m$
 - 5000 mm B.
 - C. 100 nm
 - D. $5 \times 10^{-3} \, \text{pm}$
 - E. 500 pm
- 6. What is the nuclear binding energy per nucleon, in joules, for ${}_{12}^{25}{\rm Mg}$ (atomic mass 24.985839) amu). [Data: ${}^{1}_{0}$ n (atomic mass) = 1.008665 amu; 1 p (mass) = 1.007825 amu; 1 kg = 6.022 \times 10²⁶ amu; c = 3.00 \times 10⁸ m/s, 1 amu = 1.661 x 10⁻²⁷ kg]
 - A. 0.22076 J/nucleon
 - B. 3.30×10^{-11} J/nucleon C. 1.32×10^{-12} J/nucleon

 - 0.999 J/nucleon
 - E. None of these.
- 7. What fraction of radioactive atoms remains in a sample after six half-lives?
 - A. zero
 - B. 1/6
 - C. 1/16
 - D. 1/32
 - E. 1/64

- 8. A rock contains 0.37 mg of Pb-206 and 0.95 mg of U-238. The half-life of the decay series U- $238 \rightarrow \text{Pb-}206 \text{ is } 4.5 \times 10^9 \text{ yr.}$ Assuming no Pb-206 was present in the rock initially, how old is the rock?
 - A. $1.7 \times 10^9 \text{ yr}$
 - B. $5.2 \times 10^9 \text{ yr}$
 - C. $2.7 \times 10^6 \text{ yr}$

 - D. $4.5 \times 10^9 \text{ yr}$ E. $2.4 \times 10^9 \text{ yr}$
- 9. Charcoal found under a stone at Stonehenge, England, has a carbon-14 activity that is 0.60 that of new wood. How old is the charcoal? (The half-life of carbon-14 is 5,730 years.)
 - A. Less than 5,730 yr
 - B. Between 5,730 and 11,460 yr
 - C. Between 11,460 and 17,190 yr
 - D. More than 17,190 yr
- 10. The Rb-87/Sr-87 method of dating rocks is often used by geologists:

$$^{87}_{37}Rb \rightarrow ^{87}_{38}Sr + ^{0}_{-1}\beta \qquad t_{1/2} = 6.0 \times 10^{10} \ yr$$

Estimate the age of a rock sample in which the present-day mole ratio of Rb-87 to Sr-87 is 36:1.

- A. $2.4 \times 10^9 \text{ yr}$
- B. $1.7 \times 10^9 \text{ yr}$
- C. $3.1 \times 10^{11} \text{ yr}$
- D. $4.1 \times 10^{-11} \text{ yr}$
- E. $3.6 \times 10^{11} \text{ yr}$

- 11. Which is the formula for the hydronium ion?
 - A. OH
 - B. H₂O
 - C. H_3O^+
 - D. H₃O⁻
 - E. H_2O^+
- 12. In the reaction $HSO_4^-(aq) + OH^-(aq)$ $SO_4^{2-}(aq) + H_2O(l)$, the conjugate acid-base pairs are

- A. Row 1
- B. Row 2
- C. Row 3
- D. Row 4
- E. Row 5
- 13. Identify the conjugate base of HSO_4^- in the reaction

$$H_2PO_4^- + HSO_4^- \qquad H_3PO_4 + SO_4^{2-}$$

- A. $H_2PO_4^-$
- B. H₂SO₄
- C. H₂O
- D. H₃PO₄
- E. SO_4^{2-}
- 14. Which one of these statements about strong acids is *true*?
 - A. All strong acids have H atoms bonded to electronegative oxygen atoms.
 - B. Strong acids are 100% ionized in water.
 - C. The conjugate base of a strong acid is itself a strong base.
 - D. Strong acids are very concentrated acids.
 - E. Strong acids produce solutions with a higher pH than weak acids.

- 15. One liter of an aqueous solution contains $6.02 \times 10^{21} \, \text{H}_3\text{O}^+$ ions. Therefore, its H_3O^+ ion concentration is
 - A. 0.0100 mole per liter.
 - B. 0.100 mole per liter.

 - C. 1.00 mole per liter. D. 6.02×10^{21} mole per liter. E. 6.02×10^{23} mole per liter
- 16. What is the concentration of H⁺ in a 2.5 M HCl solution?
 - A. 0
 - B. 1.3 M
 - C. 2.5 M
 - D. 5.0 M
 - E. 10.M
- 17. The OH^- concentration in a 2.5×10^{-3} M Ba(OH)₂ solution is
 - A. 4.0×10^{-12} M.
 - B. 2.5×10^{-3} M.
 - C. 5.0×10^{-3} M.
 - D. 1.2×10^{-2} M.
 - E. 0.025 M.
- 18. Calculate the H⁺ ion concentration in a 8.8×10^{-4} M Ca(OH)₂ solution.
 - A. $8.8 \times 10^{-4} \text{ M}$
 - B. $1.8 \times 10^{-3} \text{ M}$
 - C. $2.2 \times 10^{-11} \text{ M}$

 - D. $1.1 \times 10^{-11} \text{ M}$ E. $5.7 \times 10^{-12} \text{ M}$
- 19. A 0.14 M HNO₂ solution is 5.7% ionized. Calculate the H⁺ ion concentration.
 - A. $8.0 \times 10^{-3} \text{ M}$
 - B. 0.057 M
 - C. 0.13 M
 - D. 0.14 M
 - $0.80 \, M$ E.

20. A $0.10\,M$ NH $_3$ solution is 1.3% ionized. Calculate the H^+ ion concentration.

$$NH_3 + H_2O$$
 $NH_4^+ + OH^-$

- A. $1.3 \times 10^{-3} \text{ M}$
- B. $7.7 \times 10^{-2} \text{ M}$
- C. $7.7 \times 10^{-12} \text{ M}$
- D. 0.13 M
- E. 0.10 M
- 21. Calculate the H₃O⁺ ion concentration in lemon juice having a pH of 2.4.
 - A. $4.0 \times 10^{-2} \text{ M}$
 - B. 250 M
 - C. 0.38 M
 - D. $4.0 \times 10^{-3} \text{ M}$
 - E. 12 M
- 22. Calculate the pH of a 6.71×10^{-2} M NaOH solution.
 - A. 12.83
 - B. 2.17
 - C. 11.82
 - D. 6.71
 - E. 1.17
- 23. What is the pH of a 0.001 M Ca(OH)₂ solution?
 - A. 3.0
 - B. 11.0
 - C. 2.7
 - D. 17.0
 - E. 11.3
- 24. The pOH of a solution is 9.60 Calculate the hydrogen ion concentration in this solution.
 - A. $2.5 \times 10^{-10} \,\mathrm{M}$
 - B. $6.0 \times 10^{-9} \text{ M}$
 - C. $4.0 \times 10^{-5} \text{ M}$
 - D. $2.4 \times 10^{-4} \,\mathrm{M}$
 - E. $1.0 \times 10^{-14} \text{ M}$

- 25. Which solution will have the lowest pH?
 - A. 0.10 M HCN
 - B. 0.10 M HNO_3
 - C. 0.10 M NaCl
 - D. 0.10 M H₂CO₃
 - E. 0.10 M NaOH
- 26. Which one of these responses is *true* with regard to a 0.1 M solution of a weak acid HA?
 - A. $[H^+] > [A^-]$
 - B. pH = 1.0
 - C. $[H^{+}] < [A^{-}]$
 - D. pH > 1.0
 - E. $[OH^{-}] > [H^{+}]$
- 27. Acid strength increases in the series: HCN < HF < HSO₄⁻. Which of these species is the *strongest* base?
 - A. H_2SO_4
 - B. SO_4^{2-}
 - C. F
 - D. CN
 - E. HSO_4^-
- 28. Arrange the acids HOCl, HClO₃, and HClO₂ in order of increasing acid strength.
 - A. $HOCl < HClO_3 < HClO_2$
 - B. $HOCl < HClO_2 < HClO_3$
 - C. $HClO_2 < HOCl < HClO_3$
 - D. $HClO_3 < HOCl < HClO_2$
 - E. $HClO_3 < HClO_2 < HOCl$
- 29. Which one of these net ionic equations represents the reaction of a *strong acid* with a *weak base*?
 - A. $H^+(aq) + OH^-(aq) \rightarrow H_2O(aq)$
 - B. $H^{+}(aq) + CH_3NH_2(aq) \rightarrow CH_3NH_3^{+}(aq)$
 - C. $OH^{-}(aq) + HCN(aq) \rightarrow H_2O(aq) + CN^{-}(aq)$
 - $D. \quad HCN(aq) + CH_3NH_2(aq) \rightarrow CH_3NH_3^+(aq) + CN^-(aq)$

- 30. Which of these species will act as a Lewis acid?
 - A. NH₃
 - B. NH_4^+
 - C. H_2O
 - D. BF₃
 - E. F
- 31. In the reaction $CaO(s) + SO_2(g)$ $CaSO_3(s)$,
 - A. O^{2-} acts as a Lewis base, and SO_2 acts as a Lewis acid.
 - B. Ca^{2+} acts as a Lewis base, and SO_4^{2-} acts as a Lewis acid.
 - C. SO_4^{2-} acts as a Lewis base, and SO_2 acts as a Lewis acid.
 - D. SO_2 acts as a Lewis base, and O^{2-} acts as a Lewis acid.
 - E. SO_2 acts as a Lewis base, and Ca^{2+} acts as a Lewis acid.
- 32. Which one of the following salts will form an acidic solution on dissolving in water?
 - A. LiBr
 - B. NaF
 - C. KOH
 - D. FeCl₃
 - E. NaCN
- 33. What mass of sodium nitrite must be added to 350. mL of water to give a solution with pH = $8.40? [K_a(HNO_2) = 5.6 \times 10^{-4}]$
 - A. 68 g
 - B. 1.7×10^{-4} g
 - C. 0.039 g
 - D. 8.3 g
 - E. 24 g

ANSWERS

- 1 D
- 2 Α
- 3 Α
- 4 Ε
- 5 D
- 6 С
- 7 Ε
- 8 Ε
- 9 Α
- 10 Α
- С 11
- Α 12
- 13 Ε
- В 14
- 15 Α
- 16 С
- С 17
- Ε 18
- 19 Α
- 20 С
- 21 D
- 22 Α
- 23 Ε С 24
- 25 В
- 26 D 27 D
- В 28
- 29 В
- 30 D
- 31 Α
- 32 D
- 33 D