General Chemistry 2 Exam 1 Summer 2008
 Kingsborough Community College Dept. of Physical Sciences

Each question is worth 3 points. Mark your answers on the exam and on the scantron form.

First-order decay kinetics
$\ln \left(\mathrm{A} / \mathrm{A}_{0}\right)=-\mathrm{kt}$
$\ln (\mathrm{A})=-\mathrm{kt}+\ln \left(\mathrm{A}_{0}\right)$
$\mathrm{kt}_{1 / 2}=0.693$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{W}}=\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}}=10^{-14}$
$\mathrm{pH}+\mathrm{pOH}=14.00$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$\mathrm{E}=\Delta \mathrm{mc}^{2}$
$\mathrm{c}=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& p=10^{-12} \\
& n=10^{-9} \\
& u=10^{-6} \\
& m=10^{-3} \\
& c=10^{-2} \\
& k=10^{3} \\
& M=10^{6} \\
& G=10^{9}
\end{aligned}
$$

1. Alpha particles are identical to
A. protons.
B. helium atoms.
C. hydrogen atoms.
D. helium nuclei.
E. electrons.
2. How many neutrons and protons (nucleons) does an atom with the symbol ${ }_{16}^{33} \mathrm{~S}$ have?
A. 33
B. 16
C. 49
D. 16
E. None of these.
3. When atoms of beryllium-9 are bombarded with alpha particles, neutrons are produced.

What new isotope is also formed?

$$
{ }_{2}^{4} \mathrm{He}+{ }_{4}^{9} \mathrm{Be} \rightarrow{ }_{0}^{1} \mathrm{n}+
$$

A. $\quad{ }_{6}^{12} \mathrm{C}$
B. ${ }_{3}^{5} \mathrm{Li}$
C. ${ }_{3}^{8} \mathrm{Li}$
D. ${ }_{5}^{10} \mathrm{~B}$
E. ${ }_{5}^{12} \mathrm{~B}$
4. What is the missing symbol in this plutonium fission reaction?

$$
{ }_{94}^{239} \mathrm{Pu}+{ }_{0}^{1} \mathrm{n} \rightarrow \ldots+{ }_{38}^{91} \mathrm{Sr}+3{ }_{0}^{1} \mathrm{n}
$$

A. $\quad{ }_{56}^{148} \mathrm{Ba}$
B. ${ }_{-1}^{0} \beta$
C. ${ }_{54}^{143} \mathrm{Xe}$
D. ${ }_{38}^{91} \mathrm{Sr}$
E. $\quad{ }_{56}^{146} \mathrm{Ba}$
5. A typical radius of an atomic nucleus is about
A. $\quad 100 \mu \mathrm{~m}$
B. 5000 mm
C. 100 nm
D. $5 \times 10^{-3} \mathrm{pm}$
E. 500 pm
6. What is the nuclear binding energy per nucleon, in joules, for ${ }_{12}^{25} \mathrm{Mg}$ (atomic mass 24.985839
amu). [Data: ${ }_{0}^{1} \mathrm{n}$ (atomic mass) $=1.008665 \mathrm{amu} ;{ }^{1} \mathrm{p}$ (mass) $=1.007825 \mathrm{amu} ; 1 \mathrm{~kg}=6.022$ $\left.\times 10^{26} \mathrm{amu} ; \mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}, 1 \mathrm{amu}=1.661 \times 10^{-27} \mathrm{~kg}\right]$
A. $0.22076 \mathrm{~J} /$ nucleon
B. $3.30 \times 10^{-11} \mathrm{~J} /$ nucleon
C. $1.32 \times 10^{-12} \mathrm{~J} /$ nucleon
D. $0.999 \mathrm{~J} /$ nucleon
E. None of these.
7. What fraction of radioactive atoms remains in a sample after six half-lives?
A. zero
B. $1 / 6$
C. $1 / 16$
D. $1 / 32$
E. $1 / 64$
8. A rock contains 0.37 mg of $\mathrm{Pb}-206$ and 0.95 mg of $\mathrm{U}-238$. The half-life of the decay series $\mathrm{U}-$ $238 \rightarrow \mathrm{~Pb}-206$ is 4.5×10^{9} yr. Assuming no $\mathrm{Pb}-206$ was present in the rock initially, how old is the rock?
A. $1.7 \times 10^{9} \mathrm{yr}$
B. $5.2 \times 10^{9} \mathrm{yr}$
C. $2.7 \times 10^{6} \mathrm{yr}$
D. $4.5 \times 10^{9} \mathrm{yr}$
E. $\quad 2.4 \times 10^{9} \mathrm{yr}$
9. Charcoal found under a stone at Stonehenge, England, has a carbon-14 activity that is 0.60 that of new wood. How old is the charcoal? (The half-life of carbon-14 is 5,730 years.)
A. Less than $5,730 \mathrm{yr}$
B. Between 5,730 and $11,460 \mathrm{yr}$
C. Between 11,460 and 17,190 yr
D. More than $17,190 \mathrm{yr}$
10. The Rb-87/Sr-87 method of dating rocks is often used by geologists:

$$
{ }_{37}^{87} \mathrm{Rb} \rightarrow{ }_{38}^{87} \mathrm{Sr}+{ }_{-1}^{0} \beta \quad \mathrm{t}_{1 / 2}=6.0 \times 10^{10} \mathrm{yr}
$$

Estimate the age of a rock sample in which the present-day mole ratio of $\mathrm{Rb}-87$ to $\mathrm{Sr}-87$ is 36:1.
A. $2.4 \times 10^{9} \mathrm{yr}$
B. $\quad 1.7 \times 10^{9} \mathrm{yr}$
C. $3.1 \times 10^{11} \mathrm{yr}$
D. $4.1 \times 10^{-11} \mathrm{yr}$
E. $\quad 3.6 \times 10^{11} \mathrm{yr}$
11. Which is the formula for the hydronium ion?
A. OH^{-}
B. $\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{H}_{3} \mathrm{O}^{+}$
D. $\mathrm{H}_{3} \mathrm{O}^{-}$
E. $\mathrm{H}_{2} \mathrm{O}^{+}$
12. In the reaction $\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{SO}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$, the conjugate acid-base pairs are
pair $1 \quad$ pair 2
Row $1 \quad \mathrm{HSO}_{4}{ }^{-}$and $\mathrm{SO}_{4}{ }^{2-} ; \quad \mathrm{H}_{2} \mathrm{O}$ and OH^{-}.
Row $2 \quad \mathrm{HSO}_{4}{ }^{-}$and $\mathrm{H}_{3} \mathrm{O}^{+} ; \quad \mathrm{SO}_{4}{ }^{2-}$ and OH^{-}.
Row $3 \quad \mathrm{HSO}_{4}{ }^{-}$and $\mathrm{OH}^{-} ; \quad \mathrm{SO}_{4}{ }^{2-}$ and $\mathrm{H}_{2} \mathrm{O}$.
Row $4 \quad \mathrm{HSO}_{4}{ }^{-}$and $\mathrm{H}_{2} \mathrm{O} ; \quad \mathrm{OH}^{-}$and $\mathrm{SO}_{4}{ }^{2-}$.
Row $5 \quad \mathrm{HSO}_{4}^{-}$and $\mathrm{OH}^{-} ; \quad \mathrm{SO}_{4}{ }^{2-}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$.
A. Row 1
B. Row 2
C. Row 3
D. Row 4
E. Row 5
13. Identify the conjugate base of HSO_{4}^{-}in the reaction

$$
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{HSO}_{4}^{-} \quad \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{SO}_{4}^{2-}
$$

A. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{H}_{3} \mathrm{PO}_{4}$
E. $\mathrm{SO}_{4}{ }^{2-}$
14. Which one of these statements about strong acids is true?
A. All strong acids have H atoms bonded to electronegative oxygen atoms.
B. Strong acids are 100% ionized in water.
C. The conjugate base of a strong acid is itself a strong base.
D. Strong acids are very concentrated acids.
E. Strong acids produce solutions with a higher pH than weak acids.
15. One liter of an aqueous solution contains $6.02 \times 10^{21} \mathrm{H}_{3} \mathrm{O}^{+}$ions. Therefore, its $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration is
A. $\quad 0.0100$ mole per liter.
B. 0.100 mole per liter.
C. 1.00 mole per liter.
D. 6.02×10^{21} mole per liter.
E. $\quad 6.02 \times 10^{23}$ mole per liter
16. What is the concentration of H^{+}in a 2.5 M HCl solution?
A. 0
B. $\quad 1.3 \mathrm{M}$
C. $\quad 2.5 \mathrm{M}$
D. 5.0 M
E. $\quad 10 . \mathrm{M}$
17. The OH^{-}concentration in a $2.5 \times 10^{-3} \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution is
A. $\quad 4.0 \times 10^{-12} \mathrm{M}$.
B. $2.5 \times 10^{-3} \mathrm{M}$.
C. $5.0 \times 10^{-3} \mathrm{M}$.
D. $1.2 \times 10^{-2} \mathrm{M}$.
E. $\quad 0.025 \mathrm{M}$.
18. Calculate the H^{+}ion concentration in a $8.8 \times 10^{-4} \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ solution.
A. $\quad 8.8 \times 10^{-4} \mathrm{M}$
B. $1.8 \times 10^{-3} \mathrm{M}$
C. $2.2 \times 10^{-11} \mathrm{M}$
D. $\quad 1.1 \times 10^{-11} \mathrm{M}$
E. $\quad 5.7 \times 10^{-12} \mathrm{M}$
19. A $0.14 \mathrm{M} \mathrm{HNO}_{2}$ solution is 5.7% ionized. Calculate the H^{+}ion concentration.
A. $\quad 8.0 \times 10^{-3} \mathrm{M}$
B. $\quad 0.057 \mathrm{M}$
C. $\quad 0.13 \mathrm{M}$
D. $\quad 0.14 \mathrm{M}$
E. $\quad 0.80 \mathrm{M}$
20. A $0.10 \mathrm{M} \mathrm{NH}_{3}$ solution is 1.3% ionized. Calculate the H^{+}ion concentration.

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

A. $\quad 1.3 \times 10^{-3} \mathrm{M}$
B. $\quad 7.7 \times 10^{-2} \mathrm{M}$
C. $\quad 7.7 \times 10^{-12} \mathrm{M}$
D. $\quad 0.13 \mathrm{M}$
E. $\quad 0.10 \mathrm{M}$
21. Calculate the $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration in lemon juice having a pH of 2.4.
A. $\quad 4.0 \times 10^{-2} \mathrm{M}$
B. 250 M
C. $\quad 0.38 \mathrm{M}$
D. $4.0 \times 10^{-3} \mathrm{M}$
E. $\quad 12 \mathrm{M}$
22. Calculate the pH of a $6.71 \times 10^{-2} \mathrm{M} \mathrm{NaOH}$ solution.
A. 12.83
B. 2.17
C. 11.82
D. 6.71
E. $\quad 1.17$
23. What is the pH of a $0.001 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ solution?
A. 3.0
B. 11.0
C. 2.7
D. $\quad 17.0$
E. 11.3
24. The pOH of a solution is 9.60 Calculate the hydrogen ion concentration in this solution.
A. $\quad 2.5 \times 10^{-10} \mathrm{M}$
B. $\quad 6.0 \times 10^{-9} \mathrm{M}$
C. $4.0 \times 10^{-5} \mathrm{M}$
D. $2.4 \times 10^{-4} \mathrm{M}$
E. $\quad 1.0 \times 10^{-14} \mathrm{M}$
25. Which solution will have the lowest pH ?
A. $\quad 0.10 \mathrm{M} \mathrm{HCN}$
B. $\quad 0.10 \mathrm{M} \mathrm{HNO}_{3}$
C. $\quad 0.10 \mathrm{M} \mathrm{NaCl}$
D. $\quad 0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$
E. $\quad 0.10 \mathrm{M} \mathrm{NaOH}$
26. Which one of these responses is true with regard to a 0.1 M solution of a weak acid HA?
A. $\left[\mathrm{H}^{+}\right]>\left[\mathrm{A}^{-}\right]$
B. $\mathrm{pH}=1.0$
C. $\left[\mathrm{H}^{+}\right]<\left[\mathrm{A}^{-}\right]$
D. $\mathrm{pH}>1.0$
E. $\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}^{+}\right]$
27. Acid strength increases in the series: $\mathrm{HCN}<\mathrm{HF}<\mathrm{HSO}_{4}^{-}$. Which of these species is the strongest base?
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$
B. $\mathrm{SO}_{4}{ }^{2-}$
C. F^{-}
D. CN^{-}
E. HSO_{4}^{-}
28. Arrange the acids $\mathrm{HOCl}, \mathrm{HClO}_{3}$, and HClO_{2} in order of increasing acid strength.
A. $\mathrm{HOCl}<\mathrm{HClO}_{3}<\mathrm{HClO}_{2}$
B. $\mathrm{HOCl}<\mathrm{HClO}_{2}<\mathrm{HClO}_{3}$
C. $\mathrm{HClO}_{2}<\mathrm{HOCl}<\mathrm{HClO}_{3}$
D. $\mathrm{HClO}_{3}<\mathrm{HOCl}<\mathrm{HClO}_{2}$
E. $\mathrm{HClO}_{3}<\mathrm{HClO}_{2}<\mathrm{HOCl}$
29. Which one of these net ionic equations represents the reaction of a strong acid with a weak base?
A. $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$
B. $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})$
C. $\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{HCN}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq})$
D. $\mathrm{HCN}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq})$
30. Which of these species will act as a Lewis acid?
A. NH_{3}
B. NH_{4}^{+}
C. $\mathrm{H}_{2} \mathrm{O}$
D. BF_{3}
E. F^{-}
31. In the reaction $\mathrm{CaO}(\mathrm{s})+\mathrm{SO}_{2}(\mathrm{~g}) \quad \mathrm{CaSO}_{3}(\mathrm{~s})$,
A. O^{2-} acts as a Lewis base, and SO_{2} acts as a Lewis acid.
B. Ca^{2+} acts as a Lewis base, and $\mathrm{SO}_{4}{ }^{2-}$ acts as a Lewis acid.
C. $\mathrm{SO}_{4}{ }^{2-}$ acts as a Lewis base, and SO_{2} acts as a Lewis acid.
D. SO_{2} acts as a Lewis base, and O^{2-} acts as a Lewis acid.
E. SO_{2} acts as a Lewis base, and Ca^{2+} acts as a Lewis acid.
32. Which one of the following salts will form an acidic solution on dissolving in water?
A. LiBr
B. NaF
C. KOH
D. FeCl_{3}
E. NaCN
33. What mass of sodium nitrite must be added to 350 . mL of water to give a solution with $\mathrm{pH}=$ 8.40 ? $\left[\mathrm{K}_{\mathrm{a}}\left(\mathrm{HNO}_{2}\right)=5.6 \times 10^{-4}\right]$
A. 68 g
B. $1.7 \times 10^{-4} \mathrm{~g}$
C. 0.039 g
D. 8.3 g
E. 24 g

ANSWERS	
1	D
2	A
3	A
4	E
5	D
6	C
7	E
8	E
9	A
10	A
11	C
12	A
13	E
14	B
15	A
16	C
17	C
18	E
19	A
20	C
21	D
22	A
23	E
24	C
25	B
26	D
27	D
28	B
29	B
30	D
31	A
32	D
33	D

