General Chemistry 2Exam 1 Summer 2008

Kingsborough Community CollegeDept. of Physical Sciences

The first 25 questions are multiple-choice. Each question is valued at 3 points. Mark your answers on the scantron form.

Part 2 (questions 26-28) are free response. Each question is valued at 10 points. Show all of your reasoning on the exam to receive credit.

1. The equilibrium constant expression for the reaction $2 \mathrm{BrF}_{5}(\mathrm{~g}) \leftrightharpoons \mathrm{Br}_{2}(\mathrm{~g})+5 \mathrm{~F}_{2}(\mathrm{~g})$ is
A. $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{Br}_{2}\right]\left[\mathrm{F}_{2}\right] /\left[\mathrm{BrF}_{5}\right]$
B. $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{Br}_{2}\right]\left[\mathrm{F}_{2}\right]^{5} /\left[\mathrm{BrF}_{5}\right]^{2}$
C. $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{Br}_{2}\right]\left[\mathrm{F}_{2}\right]^{2 /}\left[\mathrm{BrF}_{5}\right]^{5}$
D. $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{BrF}_{5}\right]^{2} /\left[\mathrm{Br}_{2}\right]\left[\mathrm{F}_{2}\right]^{5}$
E. $\quad \mathrm{K}_{\mathrm{c}}=2\left[\mathrm{BrF}_{5}\right]^{2} /\left(\left[\mathrm{Br}_{2}\right] \times 5\left[\mathrm{~F}_{2}\right]^{5}\right)$
2. Which is the correct equilibrium constant expression for the following reaction?
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
A. $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{Fe}_{2} \mathrm{O}_{3}\right]\left[\mathrm{H}_{2}\right]^{3} /[\mathrm{Fe}]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{3}$
B. $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{H}_{2}\right] /\left[\mathrm{H}_{2} \mathrm{O}\right]$
C. $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{H}_{2} \mathrm{O}\right]^{3} /\left[\mathrm{H}_{2}\right]^{3}$
D. $\mathrm{K}_{\mathrm{c}}=[\mathrm{Fe}]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{3} /\left[\mathrm{Fe}_{2} \mathrm{O}_{3}\right]\left[\mathrm{H}_{2}\right]^{3}$
E. $\mathrm{K}_{\mathrm{c}}=[\mathrm{Fe}]\left[\mathrm{H}_{2} \mathrm{O}\right] /\left[\mathrm{Fe}_{2} \mathrm{O}_{3}\right]\left[\mathrm{H}_{2}\right]$
3. When the following reaction is at equilibrium, which of these relationships is always true?

$$
2 \mathrm{NOCl}(\mathrm{~g}) \quad 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

A. $[\mathrm{NO}]\left[\mathrm{Cl}_{2}\right]=[\mathrm{NOCl}]$
B. $[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]=[\mathrm{NOCl}]^{2}$
C. $[\mathrm{NOCl}]=[\mathrm{NO}]$
D. $2[\mathrm{NO}]=\left[\mathrm{Cl}_{2}\right]$
E. $[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]=\mathrm{K}_{\mathrm{c}}[\mathrm{NOCl}]^{2}$
4. The following reactions occur at 500 K . Arrange them in order of increasing tendency to proceed to completion (least \rightarrow greatest tendency).

1. $2 \mathrm{NOCl} \leftrightharpoons 2 \mathrm{NO}+\mathrm{Cl}_{2}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{p}}=1.7 \times 10^{-2} \\
& \mathrm{~K}_{\mathrm{p}}=1.3 \times 10^{-5} \\
& \mathrm{~K}_{\mathrm{p}}=5.9 \times 10^{-5}
\end{aligned}
$$

2. $2 \mathrm{SO}_{3} \leftrightharpoons 2 \mathrm{SO}_{2}+\mathrm{O}_{2}$
3. $2 \mathrm{NO}_{2} \leftrightharpoons 2 \mathrm{NO}+\mathrm{O}_{2}$
A. $2<1<3$
B. $1<2<3$
C. $2<3<1$
D. $3<2<1$
E. $3<1<2$
4. Consider the two gaseous equilibria

$$
\begin{array}{ll}
\mathrm{SO}_{2}(\mathrm{~g})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons \mathrm{SO}_{3}(\mathrm{~g}) & \mathrm{K}_{1} \\
2 \mathrm{SO}_{3}(\mathrm{~g}) \leftrightharpoons \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & \mathrm{K}_{2}
\end{array}
$$

The values of the equilibrium constants K_{1} and K_{2} are related by
A. $\mathrm{K}_{2}=\mathrm{K}_{1}{ }^{2}$
B. $K_{2}{ }^{2}=K_{1}$
C. $K_{2}=1 / K_{1}^{2}$
D. $\mathrm{K}_{2}=1 / \mathrm{K}_{1}$
E. none of these
6. Calculate K_{p} for the reaction
$2 \mathrm{NOCl}(\mathrm{g}) \leftrightharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
at $400^{\circ} \mathrm{C}$ if K_{c} at $400^{\circ} \mathrm{C}$ for this reaction is 2.1×10^{-2}.
A. 2.1×10^{-2}
B. 1.7×10^{-3}
C. 0.70
D. 1.2
E. 3.8×10^{-4}
7. K_{p} for the reaction of $\mathrm{SO}_{2}(\mathrm{~g})$ with O_{2} to produce $\mathrm{SO}_{3}(\mathrm{~g})$ is 3×10^{24}. Calculate K_{c} for this equilibrium at $25^{\circ} \mathrm{C}$. (The relevant reaction is $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$.)
A. 3×10^{24}
B. 5×10^{21}
C. 2×10^{20}
D. 5×10^{22}
E. 7×10^{25}
8. On analysis, an equilibrium mixture for the reaction
$2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})$
was found to contain $1.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}, 4.0 \mathrm{~mol} \mathrm{H}_{2}$, and $0.80 \mathrm{~mol} \mathrm{~S}_{2}$ in a 4.0 L vessel. Calculate the equilibrium constant, K_{c}, for this reaction.
A. 1.6
B. 3.2
C. 12.8
D. 0.64
E. 0.8
9. 1.25 moles of NOCl were placed in a 2.50 L reaction chamber at $427^{\circ} \mathrm{C}$. After equilibrium was reached, 1.10 moles of NOCl remained. Calculate the equilibrium constant, K_{c}, for the reaction $2 \mathrm{NOCl}(\mathrm{g}) \quad 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$.
A. 3.0×10^{-4}
B. 1.8×10^{3}
C. 1.4×10^{-3}
D. 5.6×10^{-4}
E. $\quad 4.1 \times 10^{-3}$
10. Consider the reaction $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{NO}(\mathrm{g})$, for which $\mathrm{K}_{\mathrm{c}}=0.10$ at $2,000^{\circ} \mathrm{C}$. Starting with initial concentrations of 0.040 M of N_{2} and 0.040 M of O_{2}, determine the equilibrium concentration of NO.
A. $5.4 \times 10^{-3} \mathrm{M}$
B. $\quad 0.0096 \mathrm{M}$
C. $\quad 0.011 \mathrm{M}$
D. $\quad 0.080 \mathrm{M}$
E. $\quad 0.10 \mathrm{M}$
11. For the following reaction at equilibrium in a reaction vessel, which one of these changes would cause the Br_{2} concentration to decrease?
$2 \mathrm{NOBr}(\mathrm{g}) \quad \leftrightharpoons \quad 2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}{ }^{2}=30 \mathrm{~kJ} / \mathrm{mol}$
A. Increase the temperature.
B. Remove some NO.
C. Add more NOBr.
D. Compress the gas mixture into a smaller volume.
12. For the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{HI}(\mathrm{g}), \mathrm{K}_{\mathrm{c}}=50.2$ at $445^{\circ} \mathrm{C}$. If $\left[\mathrm{H}_{2}\right]=\left[\mathrm{I}_{2}\right]=[\mathrm{HI}]=1.75 \times$ $10^{-3} \mathrm{M}$ at $445^{\circ} \mathrm{C}$, which one of these statements is true?
A. The system is at equilibrium, thus no concentration changes will occur.
B. The concentrations of HI and I_{2} will increase as the system approaches equilibrium.
C. The concentration of HI will increase as the system approaches equilibrium.
D. The concentrations of H_{2} and HI will fall as the system moves toward equilibrium.
E. The concentrations of H_{2} and I_{2} will increase as the system approaches equilibrium.
13. For the reaction $\mathrm{BrO}_{3}{ }^{-}+5 \mathrm{Br}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ at a particular time, $-\Delta\left[\mathrm{BrO}_{3}{ }^{-}\right] / \Delta \mathrm{t}=1.5 \times$ $10^{-2} \mathrm{M} / \mathrm{s}$. What is $-\Delta\left[\mathrm{Br}^{-}\right] / \Delta \mathrm{t}$ at the same instant?
A. $\quad 13 \mathrm{M} / \mathrm{s}$
B. $\quad 7.5 \times 10^{-2} \mathrm{M} / \mathrm{s}$
C. $1.5 \times 10^{-2} \mathrm{M} / \mathrm{s}$
D. $3.0 \times 10^{-3} \mathrm{M} / \mathrm{s}$
E. $\quad 330 \mathrm{M} / \mathrm{s}$
14. For the overall chemical reaction shown below, which one of the following statements can be rightly assumed?

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A. The reaction is third-order overall.
B. The reaction is second-order overall.
C. The rate law is, rate $=\mathrm{k}\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2}\left[\mathrm{O}_{2}\right]$.
D. The rate law is, rate $=k\left[\mathrm{H}_{2} \mathrm{~S}\right]\left[\mathrm{O}_{2}\right]$.
E. The rate law cannot be determined from the information given.
15. The reaction $\mathrm{A}+2 \mathrm{~B} \rightarrow$ products has the rate law, rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{3}$. If the concentration of B is doubled while that of A is unchanged, by what factor will the rate of reaction increase?
A. 2
B. 4
C. 6
D. 8
E. 9
16. Appropriate units for a first-order rate constant are
A. M / s.
B. $1 / \mathrm{M} \cdot \mathrm{s}$.
C. $1 / \mathrm{s}$.
D. $1 / \mathrm{M}^{2} \cdot \mathrm{~s}$.
17. A certain first-order reaction $\mathrm{A} \rightarrow \mathrm{B}$ is 25% complete in 42 min at $25^{\circ} \mathrm{C}$. What is the halflife of the reaction?
A. 21 min
B. 42 min
C. 84 min
D. 120 min
E. 101 min
18. Nitric oxide gas (NO) reacts with chlorine gas according to the equation $\mathrm{NO}+1 / 2 \mathrm{Cl}_{2} \rightarrow \mathrm{NOCl}$.

The following initial rates of reaction have been measured for the given reagent concentrations.

Expt. \#	$\frac{\text { Rate }(\mathrm{M} / \mathrm{hr})}{}$		$\frac{\mathrm{NO}(\mathrm{M})}{\mathrm{Cl}_{2}(\mathrm{M})}$	
1	1.19		0.50	0.50
2	4.79	1.00	0.50	
3	9.59		1.00	1.00

Which of the following is the rate law (rate equation) for this reaction?
A. rate $=\mathrm{k}[\mathrm{NO}]$
B. rate $=\mathrm{k}[\mathrm{NO}]\left[\mathrm{Cl}_{2}\right]^{1 / 2}$
C. rate $=\mathrm{k}[\mathrm{NO}]\left[\mathrm{Cl}_{2}\right]$
D. rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]$
E. rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]^{2}$
19. For the reaction $\mathrm{X}+\mathrm{Y} \rightarrow \mathrm{Z}$, the reaction rate is found to depend only upon the concentration of X . A plot of $1 / \mathrm{X}$ verses time gives a straight line.

What is the rate law for this reaction?
A. \quad rate $=k[X]$
B. \quad rate $=k[\mathrm{X}]^{2}$
C. \quad rate $=k[\mathrm{X}][\mathrm{Y}]$
D. rate $=\mathrm{k}[\mathrm{X}]^{2}[\mathrm{Y}]$
20. The reaction $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$ is suspected to be second order in NO_{2}. Which of the following kinetic plots would be the most useful to confirm whether or not the reaction is second order?
A. a plot of $\left[\mathrm{NO}_{2}\right]^{-1}$ vs. t
B. a plot of $\ln \left[\mathrm{NO}_{2}\right]$ vs. t
C. a plot of $\left[\mathrm{NO}_{2}\right]$ vs. t
D. a plot of $\ln \left[\mathrm{NO}_{2}\right]^{-1}$ vs. t
E. a plot of $\left[\mathrm{NO}_{2}\right]^{2}$ vs. t
21. The Arrhenius equation is $k=A e^{-(E a / R T)}$. The slope of a plot of $\ln k v s .1 / T$ is equal to
A. -k .
B. k .
C. E_{a}.
D. $-E_{a} / R$.
E. A.
22. The reaction $\mathrm{C}_{4} \mathrm{H}_{10} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{4}$ has an activation energy (E_{a}) of $350 \mathrm{~kJ} / \mathrm{mol}$, and the E_{a} of the reverse reaction is $260 \mathrm{~kJ} / \mathrm{mol}$. Estimate $\Delta \mathrm{H}$, in $\mathrm{kJ} / \mathrm{mol}$, for the reaction as written above.
A. $\quad-90 \mathrm{~kJ} / \mathrm{mol}$
B. $+90 \mathrm{~kJ} / \mathrm{mol}$
C. $350 \mathrm{~kJ} / \mathrm{mol}$
D. $-610 \mathrm{~kJ} / \mathrm{mol}$
E. $\quad+610 \mathrm{~kJ} / \mathrm{mol}$
23. The activation energy for the following first-order reaction is $102 \mathrm{~kJ} / \mathrm{mol}$.

$$
\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g})
$$

The value of the rate constant (k) is $1.35 \times 10^{-4} \mathrm{~s}^{-1}$ at $35^{\circ} \mathrm{C}$. What is the value of k at $0^{\circ} \mathrm{C}$?
A. $\quad 8.2 \times 10^{-7} \mathrm{~s}^{-1}$
B. $1.9 \times 10^{-5} \mathrm{~s}^{-1}$
C. $4.2 \times 10^{-5} \mathrm{~s}^{-1}$
D. $2.2 \times 10^{-2} \mathrm{~s}^{-1}$
E. none of these
24. For the chemical reaction system described by the diagram below, which statement is true?

Reaction Progress
A. The forward reaction is endothermic.
B. The activation energy for the forward reaction is greater than the activation energy for the reverse reaction.
C. At equilibrium, the activation energy for the forward reaction is equal to the activation energy for the reverse reaction.
D. The activation energy for the reverse reaction is greater than the activation energy for the forward reaction.
E. The reverse reaction is exothermic.
25. The rate law for the reaction $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ is rate $=\mathrm{k}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{I}^{-}\right]$. The following mechanism has been suggested.

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{I}^{-} \rightarrow \mathrm{HOI}+\mathrm{OH}^{-} & \text {slow } \\
\mathrm{OH}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O} & \text { fast } \\
\mathrm{HOI}+\mathrm{H}^{+}+\mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O} & \text { fast }
\end{array}
$$

Identify all intermediates included in this mechanism.
A. H^{+}and I^{-}
B. H^{+}and HOI
C. HOI and OH^{-}
D. H^{+}only
E. $\mathrm{H}_{2} \mathrm{O}$ and OH^{-}

Part 2. Each question is worth 8 points

26. Consider the reaction between NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$
$2 \mathrm{NO}_{2}(\mathrm{~g}) \leftrightharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=1.25$
Suppose that a container of 2.0 L is filled with 0.50 moles of NO_{2} and 0.010 moles of $\mathrm{N}_{2} \mathrm{O}_{4}$. What will the equilibrium concentration of each species be when the system equilibrates?
27. Consider the data given for the dimerization of butadiene at 500 K . $2 \mathrm{C}_{4} \mathrm{H}_{8}(\mathrm{~g}) \rightarrow \mathrm{C}_{8} \mathrm{H}_{12}(\mathrm{~g})$

Time (s) $\left[\mathrm{C}_{4} \mathrm{H}_{8}\right]$

1950.016
$604 \quad 0.015$
12460.013
$2180 \quad 0.010$
$6210 \quad 0.0068$

Determine the form of the rate law and the rate constant for this reaction. Use graph paper provided.
28. Experimental values for the temperature dependence of the rate constant for the gasphase reaction: $\mathrm{NO}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}$
Are as follows:
$\mathrm{T}(\mathrm{K}) \quad \mathrm{k}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$
$195 \quad 1.08 \times 10^{9}$
$230 \quad 2.95 \times 10^{9}$
$260 \quad 5.42 \times 10^{9}$
$298 \quad 12.0 \times 10^{9}$
$369 \quad 35.5 \times 10^{9}$
Make the appropriate graph using these data and determine the activation energy for this reaction.
1.B
2. C
3.E
4. C
5. C
6.D
7.E
8. B
9.D
10.C
11.D
12.C
13.B
14.E
15.D
16.C
17.E
18.D
19.B
20.A
21.D
22.B
23.A
24.D
25.C

